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Abstract— Finite element modeling of the cylindrical specimen’s shape distortion due to the con-
tainer influence under HIPing is carried out. It is assumed that the mechanical behavior of the
powder and the container obevs power law creep equations, and an extremum principle of minimum
energy dissipation is taken as the basis of the finite element approach. The specific features of the
proposed numerical methods are the utilization of special axisymmetrical shell elements for the
container and the iterative approach of the viscous approximations for the solution of the non-
linear flow equations. It is noted. that the container influence on the shape change of the specimen
depends on the magnitude of the power law creep exponent and distortions are more intensive in
the case of low temperature creep. The method for the estimation of the container ribs” influence
on the shape deviation is proposed. In many cases, it is possible to produce a precise final shape of
the part by the determination of the initial shape of the porous specimen. The iterative method for
the prediction of the necessary initial shape is put forward. The method is based on the use of
reverse calculations from the final to the initial shape. € 1998 Elsevier Science Ltd. All rights
reserved.

1. INTRODUCTION

By convention, one can distinguish two components of the shape change under isostatic
pressing. Part I of this paper (Olevsky er al., 1998) is dedicated to the semi-analytical
prediction of the aspect ratic change of a cylindrical specimen under HIPing, assuming
simple kinematic features of the process. However, these calculations carry the germ of the
general numerical approach to the problem of the container influence on the specimen
shape change. In the general case, any analytical considerations are complicated, but one
can get detailed numerical infcrmation and determine the main trends of the shape deviation
due to the specimen—container interaction.

Shape distortion, including the configuration change when the external surface of a
porous specimen loses its cylindricity, is of considerable importance too.

In the present article, the specimen and container are treated as a unified composite
porous specimen with a thin outer layer, having mechanical properties different from those
in the central part. Full bonding between the container and the specimen is assumed. Two
main problems arise in the modeling of such a system. The first specific problem is caused
by a considerable dimensional difference between the container and the specimen and the
second is a common problem for the modeling of almost all powder metallurgy deformation
processes. It lies in the fact thet one needs the solution of strongly nonlinear flow problems.

2. FINITE ELEMENT APPROACH IN MODELING OF THE DEFORMATION OF POWDER
AND POROUS MATERIALS

The mechanical behavior of any material is considered to be defined, if the constitutive
equation is known. This equetion relates macroscopic stresses to strains, strain rates and
physical parameters of the material. In the case of composite materials, equations can be
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derived theoretically if the mechanical properties and geometrical arrangement of the
constituents are known. This is relevant, in particular, for porous and powder materials.
The macroscopic constitutive equations can be derived using some averaging procedures
at the unit cell level. A variety of averaging algorithms enable the solution of this problem.
In the theory of nornlinear viscous and plastic behavior of powder and porous materials the
dissipation energy method of averaging is commonly used (Kuhn et al., 1993). This method
opens considerable possibilities for the development of the finite element method.

The finite element method requires some variational or extremum statement of the
problem. If energy dissipation in the material depends only on strain rate tensor
components, the dissipation potential @ can be determined in terms of the average dis-
sipation rate density D (Mosolov and Myasnikov, 1981):

O = [ D(ze, m)ggx_ (1)

0 &

where e, y are the first invariant of the strain rate tensor and the second invariant of the
deviator of this tensor, respectively.

The dissipatioa potential is the main component in the extremum principle for the
kinematic parameters of deformation. It was proved by Mosolov and Myasnikov (1981)
that velocities of a real deformation process render the minimum for the following func-
tional :

I=jd)dQ—J F-de—jT-vdS (2)
Q Q S

where Q is the volume of the porous specimen and S is its surface. F and T are the
body forces and surface traction, respectively and v is the velocity of the material under
deformation.

The precise expression of the average dissipation rate density D can be obtained only
as a result of detailed computer calculations. But in our case the following approximation
is valid

o] ®

D = Uoéo\/’/l —0 ¢
0

if the skeleton of the porous body obeys power law creep under uniaxial loading

o =0, <i> )
&y

where o, & are axial stress and strain rate, ¥, ¢ are functions of porosity 8 and power law
exponent « (Olevsky et al., 1998). Parameter &, is a constant, determining the time scale of
the process and o, is a function of the porous body skeleton’s deformation parameters.
The generalized Odquist parameter w is used as a measure of the accumulated skeleton
deformation (Olevsky e: al., 1998). For the uniaxial loading, w is equal to the axial
deformation and the ¢,— o dependence corresponds to the stress—strain relation in this
case.

The finite elernent method provides the numerical approach for the minimization of
eqn (2). Using the finite element approximation for the velocity field, we transform
expression (2) into a function of unknown nodal velocity values. As a rule, Euler’s equation
for this function cannot be solved by direct subsequent elimination of unknown parameters.
In this case, the iterative method of viscous approximations is appropriate (used by Olevsky
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and Maximenko, 1994). The method is based on the approximation of D in the following
form:

D x Dv = O-Gé(;x\/ 1—6 :pe _fp?l —)/2 (5)
(Wes +@ys)!' =

where ¢, y, are taken from the results of the previous iteration. Minimization of D, requires
only the solution of a set of linear equations. It was found by Olevsky and Maximenko
(1994) that the proposed iterative scheme always converges to the minimum of the above-
mentioned function. If je—e, — 0, |y —v4| — 0, the right-hand part of eqn (5) is obviously
equal to the right-hand part in eqn (3). When the preassigned convergence criterion is
stringent enough, the accuracy of the minimization eqn (2) depends only on the finite
element mesh specification.

3. GEOMETRICAL ASPECTS OF THE FINITE ELEMENT MODELING FOR HOT
ISOSTATIC PRESSING

Typically, one of the specific dimensions of the container is considerably smaller than
the average size of the porous specimen. Engineers often try to make container walls as
thin as possible in order to decrease waste product and to preserve the semblance of the
initial and final shapes of the part.

Dimensional differences can be ignored in the calculations only in the case when the
average size of the cells of the mesh for the porous specimen is comparable to the container
wall thickness. Modern computer facilities allow this type of numerical approach used by
Abouaf er al. (1988) and Nohara et al. (1988), but the shape change prediction is possible
in a much easier way (which substantially decreases computation time) with the use of a
coarse mesh for the part and specific finite elements for the container.

The direct application of the coarse mesh throughout the whole composite porous
specimen causes difficulties, because the distance between nodes in the container volume
must be small. It is known, that the velocity field is poorly defined by two nodal velocities
which are close to each other. The velocity components which are normal to the surface of
the part become almost equal in the calculations and that leads to linear dependence in the
total velocity vector and, consequently, to an ill-conditioned matrix of equations (see, for
example, A Finite Element Primer (1986)).

One possible way to get rid of these troubles is the use of special shell elements. The
main idea of the shell elemernts is the abandonment of the nodal velocities as unknown
values in the Euler equation for the functional (2).

The topology of the proposed axisymmetrical shell element is shown in Fig. 1. For
each viscous approximation D,, velocities at the central node of elements are determined
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Fig. 1. Topology of the container meshing.
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as functions of the other nodal velocity values by proper minimization of eqn (2). Therefore,
the contribution of ¢ach element to the global set of equations depends only on the velocities
in the corners of elements.

Integration of eqn (5) over any container element gives the following quadratic con-
tribution to the approximation of the functional

Al=Cpp; i=18; j=18 (6)

where v, are velocity components. Let us assume that the first four indices in C,; correspond
to the velocities v at the internal surface of the container, and the other four stand for the
components of velocities ¥” at the outer surface. The indices of the respective components
of the velocities at the opposite sides of the container differ by four.

Let us introduce the following representation for the nodal velocities in the container
volume

vi=v 4+ Y

where & is the container thickness. The parameters ¢ are considered as new unknown values
and egn (7) is the rule of transformation from v” to &. In the simplest case considered by
Olevsky et al. (1998), eqn (7) defines a transformation from the nodal velocities to the
strain rate tensor components. Substitution of eqn (7) into the set of equations with respect
to velocities eliminates terms of order 1/ and improves the matrix condition.

Replacement cf the velocities v* at the external surface of the container by £ can be
carried out as a transformation of the matrix C;;

C,-,- = Tik Ckl le (8)

where (fu- specifies Al eqn (6) as a function of the components of v/, . The non-zero entries
of the matrix 7, can be given in the following form

Ti,r = Tu‘+4 =1 i=14

T h,, i=1,2 ©
i+4i+d = B, i=3.4

where parameters /, #, are shown in Fig. 1.

The proposed transformation allows the consideration of container elements with
arbitrary thickness and enables us to trace the container influence as § — 0. The shape
change must be completely absent for 6 = 0.

4. THE MAIN REASONS OF THE CONTAINER INFLUENCE ON THE SHAPE
DISTORTION UNDER HIP

At high temperatures materials show a rate dependent mechanical behavior or creep.
Above 0.3-0.4T,, stress—strain rate equations can be expressed in the form of a power law
used by Frost and Ashby (1982) (7, is a melting point). The microscopic mechanism of
creep is changed when temperature increases. At lower temperatures (<0.67,,), the so-
called low temperature creep is noted and above this temperature the mechanism is changed
into high-temperature creep. The exponent o, ; from the relationship (4) in the case of low
temperature creep is smaller than the exponent oyr for high temperature creep. A simple
empirical rule is introduced by Frost and Ashby (1982):
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o
e ) (10)

Yt Ypt

At the temperatures below 0.37,,, the main mechanism of material flow is the low-tem-
perature plasticity and if the yield strength of material does not depend on the strain rate,
the exponent z is equal to zero.

It turns out, that variations of the strain rate exponents in the vicinity of zero con-
siderably impact the deformation behavior of materials under HIPing. The deformation of
a nickel powder cylinder in a stainless steel container was considered as a model problem.
The rate exponent for nickel changes from 0.14 to 0.22 when the temperature increases and
the same parameter for steel lies in the range between 0.1 and 0.12 in accordance with the
data of Frost and Ashby (1982). HIPing at temperatures 600 and 1100 K was simulated.
Functions g,—w for the above-mentioned materials were taken as polynomial approxi-
mations of the pertinent stress—strain curves from the reference book of Poluhin er al.
(1983). These approximations are given in the Appendix. The material of the container is
treated as incompressible and the initial porosity of the nickel was 0.4 in all the cases. In
the modeling, the external pressure was held equal to the all-round compaction yield limit
of the nickel powder

P=o,/(1-0) (11)

The external pressure was treated according to Olevsky et al. (1998).

The time of the model HIPing was not constrained. Calculations in every case were
performed until the average porosity of the compact met the value 0.5%. This type of
modeling provided a way of correct shape change comparison in the different cases.

A comparison of the shape evolution at the different temperatures is given in Fig. 2a
(T = 600 K) and Fig. 2b (T == 1100 K). The initial ratio of the container thickness and the
diameter of the specimen was taken as 0.04 to provide detectable shape change for the
pictures.

It is obvious (Fig. 2) that high temperature creep is associated with considerably
smaller shape deviations. The explanations of this effect become more clear in the case of
contrasting porosity distributions in both cases (Fig. 3). The porosity gradients during
low temperature creep are more steep than for high temperature creep because internal
homogenization of porosity is hindered due to the small power law exponent. Internal
redistribution of porosity is favorable for a more uniform pressing of the part. Porosity
distributions in Fig. 3 correspond to the moment, when average volume porosities were
equal to 0.1 in both cases.

The influence of the container on the final shape of the part depends also on the
rigidness of the container ribs. If the shell thickness is less than 1% of its other specific
dimensions, the influence of the shell joints is believed to be insignificant in the theory of
elastic shells (Abouaf ef al., 1988). Under pressing, the contributions of the container ribs
into shape deviations are accumulated during the whole course of the process and the result
depends not only on the aspect ratio of the shell, but also on the total deformation of the
part.

A precise element investigation of the container ribs’ influence necessitates special
meshing. As a result, it gives rise to additional cumbersome calculations. The most simple
way of solving this problem is the use of constraint equations at the corners of the container.
The two extreme conditions are: (i) velocity continuity without any limitation on the
evolution of the container angles; (ii) rigid joints at the corners. The difference between
these two cases can be considered as a measure of the ribs impact on the shape deviation
of the specimen (Fig. 4).

If the shape deviation d 1e to the container influence exceeds the required tolerance for
the part, the following question arises : how the initial shape of the porous specimen should
be changed to provide an accurate final configuration. The answer to this question can be
given by an iterative procedure based upon the repeated “direct” and *“‘reverse” calculations
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Fig. 2. The influence of the temperature on the shape change of the cylindrical specimen: (a)
T=600K;(b) T=100K.

of the shape change. If the final shape of the part is known, one can consider an expansion
of the final shape to the initial shape of the porous specimen introducing the pressure which
is equal to the given external pressure, however, applied in an opposite direction (tensile
load instead of compression). The law of material hardening due to the accumulated
deformation of the powder skeleton must be also taken in the “reverse” direction as the
law of softening.
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porosity
0.078 .. 0.082
0.082 .. 0.086
E 0.086 .. 0.091
0.091 .. ©0.095
0.095 .. 0.099
i oc.099.. o.102

porosity
0.097 .. 0,100
0.100 .. D.103
0.103 .. 0.105
D.105 .. 0.108

0.102 .. 0.111

0.111 .. 0.113

Fig. 3. Porosity distributions for different pressing temperatures: (a) 7= 600 K ; (b) T = 1100 K.
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Fig. 4. The influeace of the rigidness of the container ribs: (a) free hinges at the corners: (b) rigid
joint at the corners.
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Fig. 5. Calcula:ed initial shape of the workpiece for the cylindrical part.

At the first iteration, we take the initial shape of the porous specimen completely
similar to the final shape of the part and realize the first “direct” calculation to the final
shape. Then we transform obtained shape into the required final shape by changing every
node coordinate according to the rule:

. TV
z ::,-\/Vi

g ﬂ?f 12
’i\/V‘ (12)

where z,, r, are the initial node coordinates and V7, V, are the final and the initial volumes
of the porous specimen, respectively. Porosity and Odquist parameter distributions over
the finite elements remain unchanged.

The next step is a “reverse” movement from the final to the new initial shape. This
initial shape is different from the shape at the first iteration and, in general, the porosity
and Odquist parameter are ronuniform in the volume of the new initial shape. Hence, we
take the calculated shape as the shape for the second iteration, but assume a uniform
distribution of the preassigned porosity and accumulated deformation values in the volume.
Then we can repeat all procedures from the very beginning. It should be noted that
transformations (12) are the same for all iterations.

It is very difficult to justify rigorously the convergence of the proposed approach, but
as a rule, two or three iterations always allow the choice of the necessary initial shape
(which can be proved by ““direct” calculations). The initial shape for the cylindrical specimen
in the case of pressing at the temperature 600 K and initial porosity 0.4 is given in Fig. 5.

If

5. CONCLUSIONS

The container influence is the main origin of the regular shape change during HIPing.
In general, shape distortion is a result of the container—powder mechanical property differ-
ence and the nonuniform rigidness of the container.
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The extent of the container impact on the shape distortion is considerably sensitive to
the magnitude of the power law creep exponent and, consequently, to the type and physical
mechanism of the creep. At low temperature, the shape change is more intensive due to the
arising substantial density nonuniformity of the specimen during pressing. In this case, the
precise final shape of the part can be obtained by the predetermined variations of the initial
shape.
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APPENDIX

The law of hardening for nickel (g, has the units of MPa) :

gp = 1029+ 17930w— 1099’ 7 =600 K
oo = 82.941690w—993e° T = 1100 K

The law of hardening for stainless steel:

ay = 188+ 1781w — 1614’



